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Heterogeneity Problem

• This presentation is mostly following paper "Detecting Latent
Heterogeneity" by Judea Pearl [1]

• Heterogeneity Problem
• Heterogeneity problem occurs when there exist peculiar groups (in simple case

a strata of covariate C) that reacts differently to treatment/ policy (
covariate-induced het

• Example of covariate-induced Heterogenity
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Figure: The effect of treatment is different between two strata of Z
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Assessing covariate-induced heterogeneity

• Suppose we are able to measure any characteristic C (baseline covariate
that induced heterogeneity) of all individuals

• We can define a measure to calculate the effect difference between two
sub-strata of C

D(ci, cj) = |E(Y1 − Y0|C = ci)− E(Y1 − Y0|C = Cj)|

• To represent the best measure of heterogeneity in the population, we can
find the lower bound LB on the heterogeneity between any two subgroup of
C.

LB = maxci,cjD(ci, cj)

• Two main problem in this procedure
• We need to find covariate C for which c-specific effect (E(Y1 − Y0|C)) is

identifiable
• Perform maximization in over all pairs (i, j) in all vectors of C

© Jeremy Lin 3



Review of Counterfactuals

Consistency Rule

E(YX=x|X = x) = E(Y|X = x)

• Consistency rule can be interpreted as the counterfactual Yx is equal to the
observed value of Y whenever X takes the value of x

Theorem 4.3.1 Counterfactual Interpretation of Backdoor

If a set Z of variables satisfies the backdoor condition (Z is an admissible set) relative to
(X, Y), then for all x, the counterfactual Yx is conditionally independent of X given Z

E(Yx|Z) = E(Yx|X, Z)

• Conditional independence (Y ⊥⊥ X|C) sometimes referred as conditional
ignorability or conditional exchangeabilty.
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Special Cases of estimable covariate-based heterogeneity

There are three special cases when covariates C are identifiable.

• C satisfies the back-door criterion (C is admissible)
• C is part of set S that satisfies the backdoor criterion
• C is not part of any admissible sets, but causal effect is identifiable

Case 1 : C satisfies the backdoor criterion

C specific effect is identified through :

E(Y1 − Y0|C = c) = E(Y1|C = c)− E(Y0|C = c)
= E(Y1|X = 1,C = c)− E(Y0|X = 0,C = c) (Theorem 4.3.1)
= E(Y|X = 1,C = c)− E(Y|X = 0,C = c) consistency
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Special Cases of estimable covariate-based heterogeneity

Case 2 : C is part of an admissible set

• C specific effect is identified through :

E(Y1 − Y0|C = c) =
∑
s

[E(Y1|C = c,S = s)− E(Y0|C = c,S = s)]P(s|c)

=
∑
s

[E(Y|X = 1,C = c,S = s)− E(Y|X = 0,C = c,S = s)]P(s|c)

Case 3 : C is not part of any admissible sets, but Causal effect is identifiable

• E(Y1 − Y0|C = c) is estimable through front door estimator ( will be
discussed later)

Figure: C is part of admissible set {S,C} Figure: C is not admissible
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Special Cases covariate-based heterogeneity

Example where C-specific effects is not identifiable

• In model 2, S is an admissible set, but conditioning on C will open the
collider path

• Model 1 and model 2 is statistically indistinguishable, which imply there is
no statistical test can determine whether set S, C is admissible.

Figure: model 1 Figure: model 2
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Latent Heterogeneity Between The Treated and Untreated

• It is hard to detect heterogeneity through measuring the effect sizes
between two subgroups of C

• Goal : We would like to find a way to detect heterogeneity in the data
without analyzing covariates C

• Latent Heterogeneity : heterogeneity that is not present in any baseline
covariates, but manifest itself in effect differences between the Treated and
Untreated [1]
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Two types of confounding

• Suppose we have a binary treatment, then Average treatment effect (ATE)
can be decomposed into several components:

ATE = E(Y1 − Y0)

= E(Y|X = 1)− E(Y|X = 0)
− (E(Y0|X = 1)− E(Y0|X = 0))
− (ETT − ETU)/P(X = 0)

• Where ETT(average effect of treatment on the treated) and ETU(average
effect of treatment on the treated) is defined as :

ETT = E(Y1 − Y0|X = 1)
ETU = E(Y1 − Y0|X = 0)

• We can define bias as :

Bias = E(Y|X = 1)− E(Y|X = 0)− ATE

© Jeremy Lin 9



Detecting Latent Heterogeneity

• From the previous equation We can decompose Bias into two component :

Bias = (E(Y0|X = 1)− E(Y0|X = 0)) + (ETT − ETU)/P(X = 0)

• E(Y0|X = 1)− E(Y0|X = 0) is sometimes called baseline or fixed effect bias.
• ETT - ETU is also called differential treatment effect bias, or variable-effect

bias.
• decomposing bias into Baseline and variable -effect bias can be define

counterfactually without conditioning to specific covariates C
• ETT - ETU can be used as an indication of heterogeneity regardless if we

know which covariates responsible for heterogeneity.
• We will discus the three classical case where where ETT and ETU are

identifiable
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Detecting Heterogeneity in Randomized trials

• In binary randomized trial E(Y0) and E(Y1) are identifiable

E(Y1) = E(Y|X = 1)p+ E(Y1|X = 0)(1− p)

Where p = P(X = 1 )
• The difference of ETT - ETU is estimable and given by :

ETT − ETU =
E(Y|X = 1)− E(Y1)

(1− p)
+

E(Y|X = 0)− E(Y0)

p
.

• based on pre-trial and post trial data we can estimate whether
heterogeneity bias exist in the population prior to randomization without
measuring any covariates.

• Heterogeneity exist in population whenever experimental findings reveal a
non zero ETT - ETU
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Detecting Heterogeneity through Adjustments

• Suppose there exist admissible set Z of covariates yielding the the
adjustment estimand

E(Yx) =
∑
z

E(Y|x, z)P(z)

• It can be shown that ;

E(Yx|x′) =
∑
z

E(Y|x, z)P(z|x′)

• The difference of ETT - ETU is estimable and given by :

ETT−ETU =
∑
z

[
E(Y|X = x′, z)− E(Y|X = x, z)

] [
P(z|X = x′)− P(z|x = x)

]
.

• Note that although we are using set Z to measure ETT and ETU, we don’t
make any assumption that heterogeneity comes from any of the subset of Z
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Detecting Heterogeneity through Mediating Instrument

• Identification by adjustment requires modelling assumption, while
• Instrumental Variable requires milder assumption, but suffers from

fundamental limitation (only effective in linear and pseudo linear model)
• Mediating instruments , also known as front door criterion overcomes the

limitations.
• Using front door adjustment :

E(Yx|X = x′) =
∑
z

E(Y|z, x′)P(z|x)

Where x and x’ are any two level of the treatment
• Thus variable effect bias can be estimated by

ETT−ETU =
∑
z

[
E(Y|X = x′, z)− E(Y|X = x, z)

] [
P(z|X = x′)− P(z|x = x)

]

Figure: Z act as a mediating instrument
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Example : Heterogeneity in Recruitment

Problem background:

• A government is funding a job training program aimed at getting
unemployed people back into the workforce

• A pilot randomized experiment shows that the program is effective, but
critics argue that there is no proof that the program works in real life due to
heterogeneity in the population

• People who decides to enroll in the program tend to be more informed,
more intelligent , and more resourceful and would have found a job
regardless of training, while the uniformed people who could benefited from
the program is not aggressively recruited
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Example : Heterogeneity in Recruitment

We can model this problem as :

• Z is a binary variable for class of individual ( Z = 0 represent uniformed
individual)

• r as the proportion informed individual in the population
• X is a binary variable stands for participation in the program ( X = 1

represent participation in the program)
• q1 = P(X = 1|Z = 0) is the propensity for enrollment among the uninformed
• q2 = P(X = 1|Z = ‘) is the propensity for enrollment among the informed
• diff = q2− q1 represent the difference in propensity enrollment between

two class. Large diff imply informed people are more likely to be enrolled in
the program
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Example : Heterogeneity in Recruitment

Results :

Figure: Z act as a mediating instrument

• ETT- ETU is negative, which indicates loss of opportunity due to recruiting
policy

• As r approaches to 0 or 1 (population is homogeneous), variable effect bias
goes to 0

• as diff goes larger, variable effect bias increases© Jeremy Lin 16



Conclusion

• Heterogeneity problem raises when there exist a group that reacts
differently to treatment / policy

• It’s often hard to assess heterogeneity through measuring the effect sizes
between subgroups.

• Under certain conditions it is possible to measure Latent heterogeneity(i.e
measuring heterogeneity without knowing the covariates that causes
heterogeneity problem).

• Bias of Average Treatment Effect can be decomposed into baseline bias
and variable-effect bias (ETT - ETU).

• ETT − ETU ̸= 0 implies that Heterogeneity exist in the population.
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Thank You!

Question : How do we identify heterogeneity in binary randomized trial ?
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data generating model for example

• data generating model

E(Y|X,Z) = 0.7X + 0.7Z − 0.6XZ + 0.1
X|Z ∼ Bern(Zq2 + (1− Z)q1)

Z ∼ Bern(r)
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ATE decomposition proof

ATE = E(Y1 − Y0)

= E(Y1|X = 0)P(X = 0) + E(Y1|X = 1)P(X = 1)
− E(Y0|X = 0)P(X = 0)− E(Y0|X = 1)P(X = 1)

= E(Y1|X = 1) + E(Y1|X = 1)(P(X = 1)− 1)
− E(Y0|X = 0) + E(Y0|X = 0)(P(X = 0)− 1)
+ E(Y1|X = 0)P(X = 0)− E(Y0|X = 1)P(X = 1)

= E(Y1|X = 1)− E(Y0|X = 0)
+ E(Y0|X = 1) + E(Y0|X = 1)(1− P(X = 1))
− E(Y0|X = 0)− E(Y0|X = 0)(1− P(X = 1))
+ E(Y1|X = 0)P(X = 0)− E(Y1|X = 1)P(X = 0)
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ATE decomposition proof

ATE = E(Y1|X = 1)− E(Y0|X = 0)
+ E(Y0|X = 1)− E(Y0|X = 0)
+ E(Y0|X = 1)(1− P(X = 1))− E(Y0|X = 0)(1− P(X = 1))
+ E(Y1|X = 0)P(X = 0)− E(Y1|X = 1)P(X = 0)

= E(Y1|X = 1)− E(Y0|X = 0)
+ E(Y0|X = 1)− E(Y0|X = 0)
+ E(Y0|X = 1)(P(X = 0))− E(Y0|X = 0)(P(X = 0))
+ E(Y1|X = 0)P(X = 0)− E(Y1|X = 1)P(X = 0)

= E(Y|X = 1)− E(Y|X = 0)
− (E(Y0|X = 1)− E(Y0|X = 0))
− (ETT − ETU)P(X = 0)
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